

The d^{++} Range Problem in Oriented Graphs

Abstract:

In an oriented graph D , the second out-degree of a vertex x , denoted by $d^{++}(x)$, is the number of vertices y such that $d^+(x,y) = 2$, where $d^+(x,y)$ is the length of the shortest xy -directed path, if it exists. It is obvious that the sum of the first out-degrees of the vertices in an oriented graph is nothing but the number of its arcs. Unlike the first out-degree, the summation of the second out-degrees of the vertices, denoted by $d^{++}(D) = \sum_{v \in D} d^{++}(v)$, is not constant with respect to the number of vertices and arcs.

In [1], Alhussein and El Zein asked for the range of possible values of $d^{++}(D)$ over all orientations D of a given undirected graph G , which we will call the d^{++} -range of G , and answered it for complete graphs, by characterizing, as a function of some integer n , the values that can be the summation of the second out-degrees of the vertices in a tournament of order n . In other words, they showed that for any integer $n \geq 6$, the summation of the second out-degrees in an n -tournament is i if and only if $i \in \{0, \dots, n(n-1)/2\} \setminus \{1, 2, 4\}$. Moreover, they characterized n -tournaments whose summation of second out-degrees is $i \in \{0, 3\}$. Then they asked for a characterization of n -tournaments having this summation i , $5 \leq i \leq n(n-1)/2$. Throughout the proof, they use the new concept of king degree in order to settle the problem. The king degree of a vertex x is the number of vertices that can be reached from x by a directed path of length at most 2.

Alhussein [2] answered the above question for $5 \leq i \leq 9$ and found the number of such tournaments in terms of n .

In [3], Alhussein and El Zein gave a complete description of the d^{++} -range for paths and cycles, and developed general tools for triangle-free graphs. As applications, they determined the exact range for grid graphs and established the extremal values of $d^{++}(D)$ for trees through constructive proofs.

These results provide a foundation for further investigations of the d^{++} -range problem in oriented graphs, where several open problems are introduced.

References

- [1] Aya Alhussein and Ayman El Zein, The king degree and the second out-degree of tournaments, *Discrete Mathematics* 348 (9) (2025) 114497.
- [2] Aya Alhussein, Tournaments with fixed second out-degree summation: Characterization and enumeration, Under review.
- [3] Aya Alhussein and Ayman El Zein, The d^{++} range problem in oriented graphs, Under review.